BOSTON
UNIVERSITY

Deep Learning for Data Science
DS 542

https://dl4ds.github.io/fa2025/

Initialization

https://dl4ds.github.io/fa2025/

Plan for Today

* Project 1

* The need for weights initialization
* Expectations Refresher

* The (Kaiming) He Initialization

* Lottery tickets

Initialization

* Consider standard building block of NN in terms of pre-
activations:
t, = By + Qrhy
New rﬂ#?
— Bk T ﬂka[fk—l]

Preoct), e

[f/“{fufaamj F#ﬁ%mgﬁuqrﬁcms

* How do we initialize the biases and weights? (Qg Q;Q
* Equivalent to choosing starting point in our gradient descent

searches Cere i ;Ml’szﬁﬁr\ —) 2€/0% Wﬁffwhgf“ﬁgfmo(b%.tfm
Mhlu“gofw\ FDW\[&Q}M b/w — qnﬂ[L 3FO\L{J‘€W€

—= NorMmal f}@f{\rf“hb\h“ﬁm/\ m=d, ot 3

Forward Pass

* Consider standard building block of NN in terms of pre-activations:

f, = B, + Qhy
= G, + Qka[fk—l]

5k:0

* Set weights to be normally distributed

e Setall the biasesto 0

T T T
777777777

* mean0
. . % . \ . .

* What will happen as we move through the network if 0(2Z Is very small?
* What will happen as we move through the network if aé is very large?

Backward Pass

ol ol
L = Ify_1 >0 QL — ke {K,K—1,...1 7.13
) [k1>]®(k8ﬁc)j €K, ’ J (7.13)
Normal Distributions, 03
« What will happen as we propagate backwards [\ T

through the network if ¢§ is very small?

o
o

Probability Density

o
s

* What will happen as we propagate backwards
through the network if Ué is very large?

0.2 1

0.0 4

T T T T T T T T T
=20 =15 =10 =5 0 5 10 15 20

Fw;aﬁfm
Initialize weights to different variances - = = e

a Forward pass b) Backward pass
10100 - 10100 t—/__]
S ' rreaci
| Mg, gt _ is This mj’
100D Input <— Exploding gradlents
~N(0,1) 0.1
N (0 — 0.02
5 U — —
e, 0.01 Vanishi gi
v <« Vanishing gradients
0.001
|~
10—100 : : : : : : : : : 10—100 : : : : : : : : :
0 25 50 0.0 25 50 A/
Layer, & Layer, k Ezfr,ﬂ
Figure 7.4 Weight initialization. Consider a deep network with 50 hidden layers - .,mlﬁ , it
an r = 100 hidden units per layer. The network has a 100 dimensional input x TJ*MF / o
initialized with values from a standard normal distribution, a single output fixed

at y = 0, and a least squares loss function. The bias vectors 3, are initialized
to zero and the weight matrices 2 are initialized with a normal distribution
with mean zero and five different variances a?; € {0.001,0.01,0.02,0.1,1.0}. a)

How do we initialize weights to keep variance
stable across layers?

Aim: keep variance same between two layers

f' = 34+ Qh
h = alf],

Definition of variance:

of, = E[(f; — E[f;D?]

Any Questions?

* The need for weights
? ’7 ’? initialization
® o o * Expectations Refresher

* The (Kaiming) He initialization
* Lottery tickets

Expectations

C_ontiiuows

E[slsl] = [elelPr(z)ds,

Interpretation: what is the average value of g[x] when taking into account the probability of x?

Consider discrete case and assume uniform probability so calculating g[x] reduces to taking average:

N
~ % > gla] where x, ~ Pr(x)

=

S

=,
!

10

Common Expectation Functions

Function gje] Expectation
7 mean, [
— > F Gc. ’E’I B kth moment about zero
g 6{7{/0 = Uer,onef (z — p)* kth moment about the mean
e (z — p)? variance
(x — p)° skew
(x — p)* kurtosis

- F

L]

Table B.1 Special cases of expectation. For some functions g[x|, the expectation
E[g[x] is given a special name. Here we use the notation p, to represent the mean

with respect to random variable .

Rules for manipulating expectation

conSton T

E|:]€ . g[.fl?]_ — k . E[g[ﬂf]} WLL\J\‘"‘;PL'UC%'-[/}DW\ \;»/V Lxﬂ%ﬁrr{f
]

E{f[m +g[x:_ :E_f:x

E[f[x]g[y =FE f |

-x-

—|—E[g[w]} o cloly Fjan

E{g[y]} if x,y independent

not true b ciepﬂmdw’(

12

Any Questions?

* The need for weights
? ’7 ? Initialization
¢ o o * Expectations Refresher

* The (Kaiming) He initialization
* Lottery tickets

Aim: keep variance same between two layers

h = alf],
f' =3+ Qh

Definition of variance:

oy = E[(f{ —E[f/D?]

Now let’s prove: s el For
\ffmﬂcS /

ﬂ 21 mr.2 5 2
L |(z — p)*) = Elz”] — E[z] et namefioplly)

OV iqnce = BXFQC‘(’{?C{ 59 uarg = @(Pcofm#‘bm %Wepf

Keeping in mind:

o] = p

15

Rule 1: E{k: =k
Rule 2: E{k : g[l‘]_ =k - E[g[iﬂ]}
Rule 3: E|flz] + glz]| = E|fla]| +E|g[a]

Def’n Elx] = u

[(x — pr¥] = E[z® — 2zp + p]

Bwa* ELXSJD%MJ

16

Rule 2:

Def’n

A

17

Rule 2:

Def’n Elx] = u

= E[2” — 2zp + p]

= E[2”] — E[2zp] + E[p”]
— 4:" 2: L 2,“ 43[56 _|_,u2

/7@ | ethouct constynt

18

Rule 1: :

Rule 2: E[k'g[l‘]_ =k E[g[ﬂﬂ

Rule 3: E[f[az]+ g[az]: —E[f[x] +E[g[az]}
Def'n Elz] = p

= E[2° — 2z + p°]

~ Ela?] - E[2ep] +E[]
= E[z?] — 2uE[z] + p
T 2 L 2 2 ~ 2

= |x* Qo

19

Rule 1 :

Rule 2 E[k-g[w]_ =k E[g[w]}

Rule 3 E[f[azwg[az]: —E[f[x] +E[g[az]}
Def'n Elz] = p

= E[2° — 2z + p°]

_ E[s?] — E[2ay] + B[]
= E[z?] — 2uE[z] + p*

— B[z?] — 2% + 12

= E[2"] - p’

20

Rule 1: :

Rule 2: E[k'g[l‘]_ =k E[g[ﬂ?]}

Rule 3: E[f[az]+ g[az]: —E[f[x] +E[g[az]}
Def'n Elz] = p

= E[2° — 2z + p°]

= E[z°] — E[2zp] + E[4”]
= E[z°] — 2uE[x] + p°

= Efz?] — 2p° + p°

= E[2"] — p

= E[z?] — E|x]*

21

Aim: keep variance same between two layers

f' = 34+ Qh
h = alf],

et veurlan o

of, =E[(f/ —E[f/D?] < Lol

Ca\trnopte ver s @

of, = E[f*] - E[f/1? &

:) ey ?/r_']u(f#’"ﬁ

2 [(@ — 1)) = E[¢?] - E[2]?

22

Aim: keep variance same between two layers

f' = 3+ Qh
h = alf],

of, = E[(fi — E[f;D?]

of, = E|f/?] - E[fgz

Focus on this term.

Aim: keep variance same between two layer
L
— == p

A
- -
-

2;?;

f' = 3+ Qh

Consider the mean of the pre-activations:

Dy,
E[f]] =E |8i+)_ Qushy
/ I=1
{L’_’E kuﬂm_\“dr\&
S }f?é?c:,@ic, unitf e,

S

Z

24

E{k_ — k

Rule 1:
Rule 2: E[k : g[a::: =k- E[g[ib]}
Rule 3: Ehﬂ+g@::E}m:+Ekuﬂ
Rule 4: E[f[x] g[y:: ~E :f[x]:E[g[y]} if 2,y independent
Dy,
E[f]] =E |B; +) Qi;h;

=E[8] + i E [$2i5h;]

J

25

Rule 4: [f[x] gly]| = E f[a;]]E[g[y]} if x,y independent
_ - -
Elfil =E |8 + ZQiJhJ
L j:1 -
Dy,
=K [ﬁz] =+ ZE [szhj]
j=1 imk@(femﬁ ence
Dp
—E[8]+ Y E[2]E[h;]

26

Rule 1 |
Rule 2 EF°Q@_:k Ekuﬂ
Rule 3: E[f[]+g[wﬁ_ = E|f[z] +E[g[ae]}
Rule 4: E fx '- = E_f[az]_]E[g[y]} if x,y independent
CL Bi + Z Qjjh;
"-a.__ _ Dh -
; Ef
Start making initialization choices. B 15:] + 32:1 Q”
Set all the biases to 0 <L m\
 Setall the biasesto \
=E[Bi] + > E[Q]E[hy] \

=1
* Weights normally distributed D, ’
* meanO
ont =O+ZO-E[hj]€)
* variance g = i

Aim: keep variance same between two layers

— B+ Qh
h = alf],

of, = E[(fi — E[f;D?]

o, = EIf*] = B 1” = B[]

Set all the biasesto 0

Weights normally distributed
mean 0

variance d§

Rule 1; E{k: =k
Rule 2: E{k'g[f =k E[g[ib]}
Rule 3: E[f[x] +olz]| = Elfz]] + E[g[aﬂ
Rule 4: [f[az]g[y = E|f[z]|E [g[y]] if x,y independent

2, = B[] ~ ELf)

_ N _
=E |8 +) Qijh;| | -0
j=1

29

if xz,y independent

Initialization choices.
e Setallthe biasesto 0

* Weights normally distributed
* meanO
e variance 0§

30

Rule 1: E{k =k
Rule 2: E[k glz]] =k E[g[x]}
Rule 3: E [f[:c] + g[x:: —E :f[az]: +E [g[x]]
Rule 4: E{f[x]g[y =E f[az]]E{g[y]] if xz,y independent | «
= _L_ / / _— /:f
@m c&camjonml OL @5 , 0]2,:, = IE[_ZZ] — E[fi]Z _ Nl 4 kg
- . 'Z_; a Dy, ?) .
@Fpok;mama \h j=1 F‘ﬂ&-rs ‘
A s AN -
Initiw%%h%e%z 7 %;i: . Fotall the cross
;ﬁ\efﬁgy\ Sf; B terms, E[Q| = 0'so
» Setallthe biasesto 0¢ L& JW"D only the squared
ertrioshast’ iE | ' terms are left, then
* Weights normally distributed% pt > use independence.
e meanO0 £ Adh%):wakﬁﬁmm%@l%%HNWWMQ%

e variance 0§

31

f[x]g[y :Ef[a;]]E[g[y]} if x,y independent

Initialization choices.

=K
=1 -
 Setall the biasesto 0 |V L st stil@
D
| o _ iE Q2] E [h2] 74 Because the ()’s are
* Weights normally distributed pt " ’ zero mean, this is the
* meanO0 D, Dy, variance.
e variance 0§ = o3k [hj] =04) E[h]] 32

O'?c/

\eest slle .

O'Q ZE h2

J=1 A F&?—af’qcﬁ ;/mmom inser+ s +Formule
\y T

Dy,

od, Z E | ReLM wssumed activegtionfungtR

O'Q Z ReLU f]] Pfr(fj)df] From the definition of expectation.
|, RelU definion

OQZ [s> g

h-C’il :?D Eﬁa—[“iuwu-«fugé’

< Only positive integral limits
UQ § f PT fg dfg because of ReLU
TS :[has zers Mean
Jf DhO'Q(T?c Ug':iﬁ < 2 of the variance for zero mean
UQ E , distribution

33

Aim: keep variance same between two layers

Since: Kaiming He {o]{S A
2 2
B Dyogo 7

O'f/— 9

Se V052

|

= Should choose:

0_2 _ i U{,%“%hb

{2 Dh "\/C*Lr’amﬂﬁe

TO get: "FD.I""'IHEJT'
2 __ 2
of, = 0f

https://people.csail.mit.edu/kaiming/
Thisis called He initialization or Kaiming initialization.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,” Proc. IEEE International Con‘Iﬁrence
on Computer Vision, 2015, pp. 1026-1034. Accessed: Feb. 11, 2024.

He initialization (assumes RelU)

* Forward pass: want the variance of hidden unit activations in
layer k+1 to be the same as variance of activations in layer k:

5 2

0- - —-
Q Dh « Number of units at layer k j

« Backward pass: want the variance of gradients at layer k to be the |
same as variance of gradient in layer k+1: ‘

2hou § u,LL M%Ers howe MMWW(J‘/(J lll-.
Number of units at layer k+1 __——

H OQ Dy :

7z — h nt
T _p !) Qe
L D + ! h DA [hmnfrltmﬁﬂ\egw} Li}u%as 3

10100

E 0
~
= 10

10—100

Figu
and|\ Dy, = 100 hidden units per layer
initialized wi

Forward pass

|

-
-
[

50

Backward pass

10100

10—100

Consider a deep network with 50 hidden layers
The network has a 100 dimensional input x
values from a standard normal distribution, a single output fixed

at y = 0, and a least squares loss function. The bias vectors B3, are initialized
to zero and the weight matrices 2 are initialized with a normal distribution
with mean zero and five different variances 0?1 € {0.001,0.01,0.02,0.1,1.0}. a)

50

<— Exploding gradients

«— Vanishing gradients

2 —_—
D; 100

— = (.02

36

Default Initialization in PyTorch

https://pytorch.org/docs/stable/nn.init. html#torch.nn.init.kaiming_uniform P@e{; Af:-// M@u—kﬁ

whot we, OW
mrch.nn.init.kaimin@ tensor, a=@, mode="'fan_in', nonlinearity="'leaky_relu’, C‘lm(kyz‘ed -
S CE

generator=None) []

Fill the input Tensor with values using a Kaiming uniform distribution.

The method is described in Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification -
He, K. et al. (2015). The resulting tensor will have values sampled from & (—bound, bound) where
i S

Also known as He initialization.

37

https://pytorch.org/docs/stable/nn.init.html#torch.nn.init.kaiming_uniform_

Any Questions?

* The need for weights
7)) initialization
¢ o o * Expectations Refresher
* The (Kaiming) He initialization

Initialization Note

A good initialization does not prevent gradient descent from changing the
weights a lot.

o« A good initialization keeps the initial gradients modestly sized,

e And modest gradients reduce wild swings in parameters with
gradient descent

o« Smaller learningrates also help with this. et
o« Nextweek’s topic, regularization, will directly address this. Mamdm/

Limitations of Initialization

e No guarantees that the model will train to low losses
e No guarantees that training process won’t lead to large values or
gradients

e No guarantees that the model won’t have lots of inactive units
o In fact, the estimates adjusted for half being inactive!

o Infact, much of the network is often useless, and could be pruned
away!

The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks

Neural network pruning techniques can reduce the parameter counts of trained networks.by over 90% o
decreasm%storage requirements and improving computational performance of inference wi Mmpromising
accuracy. However, contemporary experience is that the sparse architectures produced by pruning are difficult to
train from the start, which would similarly improve training performance.

We find that a standard prunin%technique naturally uncovers subnetworks whose initializations made them
capable of training effectively. Based on these results, we articulate the "lottery ticket hypothesis:" dense,
randomly-initialized, feed-forward networks contain subnetworks ("winning tickets") that - when trained in
isolation - reach test accuracy comparable to the original network in a similar number of iterations. The winning
tickets we find have won the initialization lottery: their connections have initial weights that make training
particularly effective.

We present an algorithm to identify winning tickets and a series of experiments that support the lottery ticket
hypothesis and the importance of these fortuitous initializations. We consistently find winning tickets that are less
than 10-20% of the size of several fully-connected and convolutional feed-forward architectures for MNIST and
CIFAR10. Above this size, the winning tickets that we find learn faster than the original network and reach higher
test accuracy.

https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635

Any Questions?

* The need for weights
7)) initialization
¢ o o * Expectations Refresher

* The (Kaiming) He initialization
* Lottery tickets

Disclaimer

* Just because variance of gradients starts the same does not mean
that the variance of gradients stays the same.

* You should still check the gradients if you are having training
difficulties...

Bonus Tip

* If you are trying to implement a model based on a paper, and you
are having trouble training, check if they shared their code.
* Many papers omit important initialization details.

. ESfecially If they say that their method is not sensitive to initialization.

* Also, some paper descriptions of initialization don’t match their code.

	Slide 1: Deep Learning for Data Science DS 542
	Slide 2: Plan for Today
	Slide 3: Initialization
	Slide 4: Forward Pass
	Slide 5: Backward Pass
	Slide 6: Initialize weights to different variances
	Slide 7: How do we initialize weights to keep variance stable across layers?
	Slide 8: Aim: keep variance same between two layers
	Slide 9: Any Questions?
	Slide 10: Expectations
	Slide 11: Common Expectation Functions
	Slide 12: Rules for manipulating expectation
	Slide 13: Any Questions?
	Slide 14: Aim: keep variance same between two layers
	Slide 15: Now let’s prove:
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Aim: keep variance same between two layers
	Slide 23: Aim: keep variance same between two layers
	Slide 24: Aim: keep variance same between two layers
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Aim: keep variance same between two layers
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Aim: keep variance same between two layers
	Slide 35: He initialization (assumes ReLU)
	Slide 36
	Slide 37: Default Initialization in PyTorch
	Slide 38: Any Questions?
	Slide 39: Initialization Note
	Slide 40: Limitations of Initialization
	Slide 41: The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
	Slide 42: Any Questions?
	Slide 43: Disclaimer
	Slide 44: Bonus Tip

